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Abstract

A two-phase model is presented that analyzes laminar film condensation from mixtures of a vapour and a non-condensing gas in parallel-plate
channels. The channel is declining (inclined downward from the horizontal) and has an isothermal cooled bottom plate and an insulated upper plate.
The model uses a finite volume method to solve the complete two-phase boundary-layer equations including inertia forces, energy convection,
interfacial shear, and axial pressure change. Results are presented for steam–air mixtures in terms of axial variation of film thickness and local
Nusselt number for various Froude numbers, inlet Reynolds numbers, inlet gas mass fractions, and inlet temperature differences. Profiles of axial
velocity, temperature, and gas mass fraction are also presented. Increasing the angle of declination (decreasing the Froude number) produces
thinner, faster moving films. The change in local Nusselt number with Froude number was not as substantial as the change in film thickness. The
detrimental effect of the noncondensable gas on the heat transfer rate was observed to be more pronounced at higher Froude numbers. An exact
analytical solution for the liquid and mixture axial velocity profiles under end of condensation conditions is also presented and compared with the
numerical results.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Film condensation in ducts is a process that is perti-
nent to system components in the power, refrigeration, air-
conditioning, and chemical industries. Consequently, numer-
ous previous experimental and theoretical studies have been
made aimed at improving the understanding of the condensa-
tion process for various duct geometries, duct orientations, and
fluid properties. For condensation in a channel formed by two
parallel plates, a number of detailed numerical studies of film
condensation have been reported. In the horizontal orientation,
Louahlia and Panday [1,2], and Narain and Kizilyalli [3] per-
formed studies of condensation from pure vapours and Siow
et al. [4] included the effect of a non-condensing gas. In the
vertical orientation, Louahlia and Panday [5,6] studied pure
vapours and Siow et al. [7] studied steam–air mixtures. In the
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case of the declining (i.e., downward-inclined) orientation, the
work of Narain et al. [8] was concerned with condensation from
pure vapours while Siow et al. [9] reported preliminary results
for steam–air mixtures.

To the authors’ best knowledge, there are no published ex-
perimental studies on laminar film condensation from vapour–
gas mixtures for declining parallel-plate channels. The only
related experimental studies found are the studies of single-
sided condensation in horizontal channels by Lu and Surya-
narayana [10] and Yu et al. [11] and the inclined plate exper-
iment of Chung et al. [12]. Chung et al. studied condensation
on an inclined cooled plate placed in an upward flow of pure
steam or steam–air mixtures. The plate was oriented at 20 or
45 degrees from the horizontal and the cooled side faced up-
wards and downwards.

The objective of this work is to present new modelling re-
sults for condensing flow in declining parallel-plate channels,
including the effects of non-condensing gas. The results for
the effect of declination are presented using a Froude number,
rather than for specific angles of declination.
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Nomenclature

Cp specific heat . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

D diffusion coefficient . . . . . . . . . . . . . . . . . . . . . m2 s−1

Fr Froude number, uin
2/(Hg sin θ)

g gravitational acceleration . . . . . . . . . . . . . . . . . m s−2

hfg latent heat of vapourisation . . . . . . . . . . . . . . J kg−1

H plate spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
J ′′ mass flux . . . . . . . . . . . . . . . . . . . . . . . . . . kg s−1 m−2

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

ṁ′ mass flow rate per unit depth . . . . . . . . kg s−1 m−1

Nux local Nusselt number, (q ′′
wallH)/(kL�T )

Nux average Nusselt number
P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m−2

P � dimensionless pressure, (P − Pin)/(0.5ρinu
2
in)

q ′′ local wall heat flux . . . . . . . . . . . . . . . . . . . . . W m−2

Rein inlet Reynolds number, (ρinuinH)/(μin)

Reδ film Reynolds number, (4ṁ′
L)/(μL)

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T � dimensionless temperature, (T − Twall)/(�T )

u velocity component in the x direction . . . . . . m s−1

u� dimensionless x-direction velocity, (u/uin)

v velocity component in the y direction . . . . . . m s−1

W gas mass fraction

x axial co-ordinate direction . . . . . . . . . . . . . . . . . . . m
x� dimensionless x co-ordinate, (x/H)

y transverse co-ordinate direction . . . . . . . . . . . . . . . m
y� dimensionless y co-ordinate, (y/H)

Greek symbols

δ liquid film thickness . . . . . . . . . . . . . . . . . . . . . . . . . m
δ� dimensionless film thickness, (δ/H)

�T inlet temperature difference, (Tin − Twall) . . . . . . K
η y-direction transformation variable
μ viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N s m−2

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

θ angle of declination . . . . . . . . . . . . . . . . . . . . . . . . rad

Subscripts

ec end of condensation
g noncondensable gas
i liquid–mixture interface
in inlet
L liquid
M vapour–gas mixture
v vapour
wall lower plate
This work briefly describes a robust two-phase model for
film condensation from vapour–gas mixtures. This model
solves the full boundary layer equations of motion in both
phases, uses a mesh that adapts to the changing film thickness,
and implements fundamental mass, momentum, and energy
balances at a clearly defined liquid–mixture interface. The nu-
merical model is capable of obtaining solutions for the situation
when condensation ceases after some distance down the chan-
nel and is shown to match the exact analytical solution at the
end of condensation. Detailed results are presented for conden-
sation from steam–air mixtures. Local velocity, temperature,
and gas mass fraction profiles at various axial locations are used
to help understand the predicted fluid flow and heat transfer be-
haviour. In addition, the effects of changes in the declination
and inlet conditions are discussed.

2. Mathematical model

2.1. Domain definition

The domain studied is shown in Fig. 1. A mixture of vapour
and non-condensable gas enters the parallel plate duct with uni-
form velocity, temperature, gas mass fraction, and pressure. At
the inlet, the difference in temperature between the mixture and
the isothermal lower plate is �T . The duct is declining at an an-
gle θ from the horizontal and the gravitational acceleration acts
vertically downward. Along the duct, a condensate layer forms
on the cooled lower plate. Above the film is a vapour–gas region
where hydrodynamic, thermal, and mass fraction boundary lay-
ers form at the liquid–mixture interface and a hydrodynamic
Fig. 1. Domain definition.

boundary layer forms at the upper plate. Along the duct, the re-
moval of vapour from the mixture via condensation causes the
local gas mass fraction to increase axially and reduces the bulk
velocity of the mixture flow.

2.2. Governing equations

The governing equations are written for conservation of
mass, momentum, and energy for each of the condensate layer
and mixture regions in the duct shown in Fig. 1. It has been as-
sumed that the flow is laminar and incompressible, that the flu-
ids are Newtonian, that the axial diffusion terms are negligible,
and that the pressure is uniform in the y direction. Thermody-
namic and transport properties of the fluids are calculated at the
local conditions as described in Srzic et al. [13].

In the liquid film, the equations for conservation of mass,
momentum, and energy, respectively, are:
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∂

∂x
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(3)

The vapour–gas mixture phase is treated as an ideal gas mix-
ture. At the inlet to the channel and at the liquid–mixture inter-
face, saturation conditions are assumed, so that the temperature
is the equilibrium saturation temperature corresponding to the
local partial pressure of the vapour. The conservation equations
for mixture mass, mixture momentum, mixture energy, and gas
mass, respectively, are:

∂

∂x
(ρMuM) + ∂

∂y
(ρMvM) = 0 (4)

∂
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)
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Equations for the boundary conditions applicable to
Eqs. (1)–(7) are given below.

At the lower plate (y = 0):

uL = vL = 0 (8)

TL = Twall (9)

At the liquid–mixture interface (y = δ):

uL = uM (10)

J ′′
i = ρLvL − ρLuL

dδ

dx
= ρMvM − ρMuM

dδ

dx
(11)

TL = TM = Ti (12)

J ′′
i W − ρMD

∂W

∂y
= 0 (13)

kL

∂TL

∂y
= kM

∂TM

∂y
− J ′′

i hfg (14)

μL

∂uL

∂y
= μM

∂uM

∂y
(15)

At the upper plate (y = H ):

uM = vM = 0 (16)
∂TM

∂y
= ∂W

∂y
= 0 (17)

At the inlet uin, Tin, Win, and Pin are specified with uniform
profiles, and the film thickness is zero.
The governing equations (Eqs. (1)–(7)) and the boundary
conditions (Eqs. (8)–(17) and the inlet conditions) provide the
necessary relations for determining the seven field variables uL,
vL, TL, uM , vM , TM and W and the scalar δ. The interfacial en-
ergy balance (Eq. (14)) is used as the constraint equation for δ.

The scalar dP/dx is also part of the set of unknowns. The
constraint equation for dP/dx is a global mass balance at any
given x:∫ δ

0
ρLuL dy +

∫ H

δ

ρMuM dy = ṁ′
in (18)

where ṁ′
in is the inlet total mass flow rate per unit depth.

2.3. End of condensation

At a sufficient distance downstream from the inlet, under
some operating conditions, the mixture and liquid flows reach
a condition where condensation ceases. This condition arises
when the mixture temperature has everywhere cooled to Twall
and the mixture has become a gas fully saturated with vapour. In
this region, referred to here as the end of condensation, the axial
velocities, the pressure gradient, and the film thickness are con-
stant with respect to x. In this case, the momentum equations in
the liquid and mixture regions are considerably simplified and
can be solved analytically.

Appendix A briefly outlines the process for obtaining the end
of condensation solution for the dimensionless film thickness,
pressure gradient, and axial velocities.

3. Numerical solution method

Before discretization, a co-ordinate transformation was ap-
plied to the governing equations [14]. In the transformation,
y was replaced by η, where

η = y

δ
(19)

and

η = 1 +
[

y − δ

H − δ

]
(20)

in the liquid and mixture regions, respectively. This transforma-
tion permitted defining the liquid–mixture interface clearly on
control volume boundaries. The computational grid maintained
the same number of control volumes in both phase regions all
along the channel, and adapted to the changing film thickness.
A uniformly spaced grid was used in the liquid region along η,
and non-uniform spacing was used in the mixture region along
η and along the channel in both phases. In the mixture region,
the grid was contracted geometrically toward the interface and
toward the upper plate. Along the channel, the grid system was
expanded exponentially so that control volumes were concen-
trated near x = 0.

An algebraic analogue to Eqs. (1)–(7) was obtained using
a finite volume method [15]. Upwind differencing was used in
the x direction, an algebraic approximation to the exponential
differencing scheme was used in the η direction, and J ′′ was
used as a solution variable in place of v [14]. The fully coupled
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solution approach used in this work is discussed by Siow et
al. [4].

Solution of the linearized coupled equations was repeated
at each axial station (column of control volumes) until the rel-
ative change at each node of every field and of δ and dP/dx

was less than 0.00001%. The inlet conditions or the previous
station solution fields were used as the initial guess for the it-
erations at a given axial station. After a converged solution was
obtained at any given station, the solution procedure was re-
peated for the next station and marched along the channel until
either the prescribed channel length was reached, the film thick-
ness reached H , or a negative axial velocity (reverse flow) was
detected. The film Reynolds number (as defined in the nomen-
clature, with ṁ′

L being the liquid film mass flow rate per unit
depth) was also computed at all stations. For all the results
presented here, the film Reynolds number at the furthest axial
location shown in each case was between roughly 44 and 240.
These film Reynolds numbers were judged to be sufficiently
small to consider the smooth interface assumption to be reason-
able.

In addition to thorough checks for conservation and consis-
tency, the in-house computer code that implements the solution
method was checked by making comparisons with a flat-plate
model [16] that had been extensively compared with previous
well-established laminar film analyses. In these new compar-
isons, the present model was run with widely spaced plates and
it produced the same results as the flat-plate model near the in-
let to the channel, with deviations further downstream because
of the effects of the upper plate and the loss of mass due to
condensation. The present model was also compared with the
experiment of Lu and Suryanarayana [10] and with results of
the model of Louahlia and Panday [1]. Good agreement was
obtained in these comparisons [14].

For the results presented here, grid independence of the so-
lutions was established when the total heat transfer to a channel
of height 2 cm and length 8 m changed by less than 0.1% as
the number of control volumes was doubled in either the x or
y directions. Typically, at each axial station, 20 and 80 control
volumes were used in the liquid and mixture regions, respec-
tively, and 200 stations were used along the channel.

4. Results and discussion

Results are presented for a wide variety of conditions for
condensation from a steam–air mixture, which is a com-
monly encountered combination of vapour and heavier non-
condensing gas. Once the vapour–gas combination is selected,
the functional variation of the saturation pressure-temperature
relationship and all required thermal and transport properties
of the vapour, the liquid, and the gas are also specified. The
remaining independent parameters are the inlet conditions, the
lower plate temperature, the plate spacing, the gravitational ac-
celeration, and the angle of declination. These quantities can be
varied through the following set of parameters: Rein, Fr, Win,
�T , and Pin. For a fixed Rein, Fr represents different combina-
tions of values of H , g, and θ . If the g and H values are then
also fixed, Fr represents the angle of declination; Fr tends to-
ward infinity for the horizontal orientation, and Fr goes to zero
for the vertical orientation.

The results are presented in terms of dimensionless quanti-
ties. Sample results showing detailed distributions of axial ve-
locity, temperature, and gas mass fraction are presented to gain
insight into the various transport processes involved. Special at-
tention is given to the influences of the independent parameters
on the axial distributions of film thickness and local Nusselt
number.

Fig. 2 presents samples of dimensionless profiles of the ax-
ial velocity, the temperature, and the gas mass fraction across
the channel at various axial locations for two values of Fr for
Rein = 2000, �T = 20 K, Win = 0.10, and Pin = 1 atm. The
axial velocity profiles are plotted in Fig. 2(a) with the lower

Fig. 2. Local distributions of (a) axial velocity, (b) temperature, and (c) air mass
fraction at various axial locations for Froude numbers of 25 and 1000 for the
case: Rein = 2000, �T = 20 K, Win = 0.10, and Pin = 1 atm.
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part of the graph showing the liquid film region (0 � η � 1),
and the upper part of the graph showing the mixture region
(1 � η � 2). A different scale is used for the film region to
enable a clearer view of the smaller film velocities. The ax-
ial trends are the same for both Froude numbers: the growing
film accelerates along the channel (with increasing x�), while
the mixture region velocity decreases due to mass removal. The
results for Fr = 1000, which corresponds to a relatively small
angle of declination, show a slower moving film compared to
those for Fr = 25. It will be seen shortly in Fig. 3(a) that the
faster moving film is also thinner. The analytical solution for
the film velocity at the end of condensation is also plotted in
Fig. 2(a), and it is observed that the u�

L and u�
L,ec profiles are

virtually identical at x� = 400 for both values of Fr. In the mix-
ture region, the velocity is uniformly u� = 1 at the inlet, and
the profiles at x� = 5 show that boundary layers form at the
liquid–mixture interface (η = 1) and the upper plate (η = 2). At
x� = 400, there are slight deviations between the u�

M and u�
M,ec

profiles, indicating that for this case the flow in the mixture re-
gion is not yet at the end of condensation condition at that axial
distance. At a larger axial distance, the mixture region results
do approach closely the analytical solution.

The dimensionless temperature profiles plotted in Fig. 2(b)
show a nearly linear temperature variation in the liquid and
the reduction of the temperature in both phases toward zero
(corresponding to T = Twall) at large x� for both Fr values.
Under the conditions shown, however, the mixture temperature
has not reached end of condensation conditions at x� = 400 for
both Froude numbers. It is important to note that the interface
temperature is reduced more quickly with x� for the Fr = 25
case compared to the Fr = 1000 case. This reduction is evident
in Fig. 2(b) because the liquid temperature profiles are nearly
identical for Fr = 25 at x� = 100 and Fr = 1000 at x� = 5. In
addition, at x� = 50 the values of T � at η = 1 are 0.13 and
0.34 for Fr = 25 and Fr = 1000, respectively. This difference
in temperatures has an impact on the local Nusselt numbers and
is consistent with the interface mass fraction values discussed
next.

The W profiles in Fig. 2(c) show the axial build up of gas
for both Fr values. The build up of gas occurs first at the in-
terface due to the high vapour mass flux toward the interface
driven by the strong condensation rate near the inlet. The re-
sults for Fr = 25 show a more rapid increase of Wi along the
channel than that for Fr = 1000. At x� = 50, the values of Wi

are 0.63 and 0.55 for Fr = 25 and Fr = 1000, respectively. This
difference in Wi is consistent with the temperature differences
observed in Fig. 2(b). The axial increase in W and a reduction
in the gradient at the interface continue in the mixture region for
both Froude numbers as the profiles approach a constant value
across the whole mixture region at large x�. It is observed that,
at x� = 400, the W profile for Fr = 25 is closer to the end of
condensation condition; in this case, the value of Wec is 0.677
for both values of Fr.

Fig. 3 presents the axial variation of dimensionless film
thickness and both local and average Nusselt numbers for the
same case as in Fig. 2. The film is thinner for Fr = 25 compared
to Fr = 1000, as seen in Fig. 3(a). Thus, with all other para-
Fig. 3. Axial distributions of (a) dimensionless film thickness, and (b) local
and average Nusselt numbers for Froude numbers of 25 and 1000 for the case:
Rein = 2000, �T = 20 K, Win = 0.10, and Pin = 1 atm.

meters fixed, a greater angle of declination produces a thinner,
faster moving film. In this case, δ�

ec is 0.007143 and 0.02431
for Fr = 25 and Fr = 1000, respectively. The numerical results
plotted at x� = 400 in Fig. 3(a) are within 0.011% or less of
their corresponding δ�

ec values. This is consistent with Fig. 2(a)
results which indicated that, in both cases, the film velocity
field had reached end of condensation conditions at x� = 400.
The results plotted in Fig. 3(b) show the expected axial de-
crease in Nusselt number, with the highest condensation rate
near the inlet. It is interesting to note that the local and average
Nusselt numbers for Fr = 25 are slightly greater than those for
Fr = 1000. There is, however, not as great a difference in lo-
cal Nusselt number as the film thickness (shown in Fig. 3(a))
might indicate. For example, at x� = 50, the film thickness for
Fr = 1000 is roughly three times larger than that for Fr = 25.
For a nearly linear film temperature profile, this would seem to
indicate a local Nusselt number three times higher for Fr = 25.
This is not so because of the much lower interface temperature
for Fr = 25, as described with regard to Fig. 2(b). For Fr = 25,
there is a smaller temperature difference across a thinner film,
and at x� = 50, Nux is only 14% higher for the thinner film.

The graphs in Fig. 4 use the axial variation of the film thick-
ness and the local Nusselt number to examine the effect of
changing Fr for Rein = 1000, �T = 20 K, Win = 0.20, and
Pin = 1 atm. These results confirm the trends that were seen
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Fig. 4. Axial distributions of (a) dimensionless film thickness, and (b) lo-
cal Nusselt number for various Froude numbers for the case: Rein = 1000,
�T = 20 K, Win = 0.20, and Pin = 1 atm.

in Fig. 3. In Fig. 4(a), the results also show that, when starting
from a near-horizontal orientation, there is a significant reduc-
tion in the film thickness for a small increase in the angle of
declination. The rate of reduction of film thickness with in-
creased angle is smaller for higher angles (smaller Fr). The
local Nusselt number trend seen in Fig. 4(b) is consistent with
that discussed for Fig. 3(b): there is not a large change in Nux

with Fr under the conditions used.
The graphs in Fig. 5 use the axial variation of the film thick-

ness and the local Nusselt number to examine the effect of
changing Win for the same Rein, �T , and Pin as in Fig. 4
for two values of Fr. The curves in Fig. 5(a) show the same
trend for both Froude numbers: the film thickness is reduced as
Win is increased. This trend is consistent with the well-known
detrimental effect on heat transfer of increasing amounts of
non-condensing gas. For pure vapour, the condensation rate is
highest, resulting in reverse flow for both Fr values. For the con-
ditions given in Fig. 5(a), reverse flow was also encountered at
Win = 0.05 for Fr = 25. The film is again thicker for higher Fr,
and the effect on the film thickness of increasing Win is more
pronounced for Fr = 1000.

In terms of local heat transfer, shown in Fig. 5(b), Nux is re-
duced as Win is increased even though the film is thinner. This
is due to the reduction of the interface temperature with an in-
crease in Wi . It is also observed that the local Nusselt number
is always larger for lower Fr for a given value of Win. As the
Fig. 5. Axial distributions of (a) dimensionless film thickness, and (b) local
Nusselt number for Fr numbers of 6 and 1000 and various inlet air mass frac-
tions for the case: Rein = 1000, �T = 20 K, and Pin = 1 atm.

gas mass fraction is reduced, Nux becomes relatively greater
for Fr = 6 compared to Fr = 1000, but still not equivalent to
the ratio of film thicknesses.

The graphs in Figs. 6 and 7 present the effects of changing
�T on axial variations of δ� and Nux for Fr = 6 and Fr = 1000,
respectively, for Rein = 1000 and Pin = 1 atm and two val-
ues of Win. The results in Fig. 6(a) show that film thickness
increases with �T , corresponding to increasing condensation
rate. In the case of the lower Win, reverse flow was encountered
at �T = 20 K and �T = 40 K. At Win = 0.40, the condensa-
tion rate is lower, the film is thinner, and no reverse flow occurs.
In Fig. 6(b), the results show that Nux is reduced as Win is
increased, and Nux decreases with increased �T . This trend
occurs because the increase in q ′′

wall with �T occurs at a slower
rate than the increase in �T itself.

The trends of the results presented in Fig. 7 are very similar
to those in Fig. 6. The change to Fr = 1000 produced a thicker
film and lower Nux , and no reverse flow was encountered under
the conditions used.

Fig. 8 presents graphs of film thickness and local Nusselt
number for three values of Rein and two Froude numbers for
�T = 20 K, Win = 0.20, and Pin = 1 atm. Fig. 8(a) shows thin-
ner films with increased Rein because of the greater shear force
at the interface. As expected, Nux increases with Rein, due to
the decrease in film thickness, as depicted in Fig. 8(b).
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Fig. 6. Axial distributions of (a) dimensionless film thickness, and (b) local
Nusselt number for two inlet air mass fractions and various �T values for the
case: Fr = 6, Rein = 1000, and Pin = 1 atm.

Other computations were performed in which the inlet pres-
sure was varied [14]. In these tests, Pin was varied from 0.5 to
2.0 atm, and the key effect demonstrated in the results was the
effect of changes in fluid properties. Overall, an increase in Pin
produced an increase in film thickness and a decrease in Nux .
The overall change in Nux over the four-fold increase in Pin
was not substantial. The overall change in Nux for x� � 100 for
Fr = 6 and Fr = 1000 was less than 17% and 15%, respectively.
At higher x�, the overall differences are small, and so is Nux .

5. Summary and conclusions

A finite-control-volume method is utilized to solve the com-
plete set of two-phase boundary layer equations for laminar film
condensation in the presence of a noncondensable gas. Compu-
tations were made for declining parallel-plate channels with a
cooled lower wall and an insulated upper wall. A fully cou-
pled marching solution scheme was employed to produce de-
tailed profiles of velocity, temperature, and gas mass fraction,
as well as axial distributions of local film thickness and Nusselt
number. Results for steam–air mixtures are presented and the
effects of changes in Froude number, inlet gas mass fraction,
inlet Reynolds number, and inlet temperature difference are ex-
amined. For all other parameters being fixed, variation of the
Froude number corresponds to changing the angle of declina-
tion.
Fig. 7. Axial distributions of (a) dimensionless film thickness, and (b) local
Nusselt number for two inlet air mass fractions and various �T values for the
case: Fr = 1000, Rein = 1000, and Pin = 1 atm.

It was found that a decrease in Fr (increase in angle of dec-
lination) resulted in thinner, faster moving liquid films. The
thinner films did not show a substantial increase in local Nusselt
number, however, due to a decrease in the temperature differ-
ence across the film. An increase in Win resulted in a decrease
in film thickness and, when coupled with a corresponding de-
crease in the interface temperature, a decrease in the local Nus-
selt number as well. An increase in �T resulted in an increase
in film thickness and a decrease in Nux because the wall heat
flux did not increase as fast as the inlet temperature difference.
Increasing Rein always produced thinner films and higher Nux .
The effect on the film thickness of changing Rein was more pro-
nounced at higher Fr.
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Appendix A. End of condensation analytical solution

The focus of this analysis is on a region down the channel
(shown in Fig. 1) after evolution of the flow to the condition
where there is no further heat transfer because the temperatures
in both phases are uniform at Twall and constant with respect
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Fig. 8. Axial distributions of (a) dimensionless film thickness, and (b) local
Nusselt number for Froude numbers of 6 and 1000 and various inlet Reynolds
numbers for the case: �T = 20 K, Win = 0.20, and Pin = 1 atm.

to x. The mixture then consists of a gas fully saturated with
vapour with a uniform gas concentration Wec, which can be
easily calculated using standard thermodynamic relations [17].
At this end of condensation condition, the axial velocities, gas
concentration, film thickness, and pressure gradient are also in-
dependent of x. The density and viscosity of the liquid film and
the mixture at the end of condensation are simply denoted ρL

and μL and ρM and μM , respectively.
When the flow is independent of x, the simplified momen-

tum equations for the liquid and mixture regions, in dimension-
less form, are:

d2u�
L,ec

dy�2
=

(
μin

μL

)
ReinK

�
L (21)

and

d2u�
M,ec

dy�2
=

(
μin

μM

)
ReinK

�
M (22)

where

K�
L =

[
1

2

(
dP �

dx�

)
ec

−
(

ρL

ρin

)
1

Fr

]
(23)

and

K�
M =

[
1

2

(
dP �

dx�

)
−

(
ρM

ρ

)
1

Fr

]
(24)
ec in
The boundary conditions for Eqs. (21) and (22) are zero ve-
locity at both plates and equal velocity and shear stress at the
liquid–mixture interface. Integrating Eqs. (21) and (22) and ap-
plying the boundary conditions yields the following velocity
distributions:

u�
L,ec = 1

2

(
μin

μL

)
ReinK

�
L

(
y�2 + C1 y�

)
(25)

and

u�
M,ec = 1

2

(
μin

μM

)
ReinK

�
M

{
y�2

+
[

2

(
K�

L

K�
M

− 1

)
δ�

ec + K�
L

K�
M

C1

]
(y� − 1) − 1

}
(26)

where

C1 =
{[2 − (

K�
M

K�
L

+ μM

μL
)]δ�

ec
2 − 2[1 − K�

M

K�
L

]δ�
ec − K�

M

K�
L

}
[1 + (

μM

μL
− 1)δ�

ec]
(27)

Simple mass balances can be performed on both the liquid
and mixture mass flows, and can be written in dimensionless
form as:
δ�

ec∫
0

u�
L,ec dy� =

(
ρin

ρL

)(
1 − Win

Wec

)
(28)

and
1∫

δ�
ec

u�
M,ec dy� =

(
ρin

ρM

)
Win

Wec
(29)

Substituting from Eq. (25) into Eq. (28) and from Eq. (26)
into Eq. (29), produces two equations that can be written as:(

dP �

dx�

)
ec

= (a0 + a1δ
�
ec + b2δ

�
ec

2 + b3δ
�
ec

3 + b4δ
�
ec

4)

(d2δ�
ec

2 + d3δ�
ec

3 + d4δ�
ec

4)
(30)

and(
dP �

dx�

)
ec

= (e0 + e1δ
�
ec + f0 + f1δ

�
ec + f2δ

�
ec

2 + f3δ
�
ec

3 + f4δ
�
ec

4)

(g0 + g1δ�
ec + g2δ�

ec
2 + g3δ�

ec
3 + g4δ�

ec
4)

(31)

The coefficients in Eqs. (30) and (31) are given in Table 1. The
nomenclature of the coefficients for Eqs. (30) and (31) was
established so that the b and f coefficients go to zero in the
horizontal orientation (when 1/Fr → 0). In this limit, only the
a, e, d , and g coefficients remain, and the solution presented
here can be shown to be the same as that presented for end of
condensation in [4].

Equating the pressure gradient in Eqs. (30) and (31) pro-
duces an eighth order polynomial which can be solved for the
value of δ�

ec. This is the value of the dimensionless film thick-
ness at the end of condensation for a given set of values for ρin,
ρL, ρM , μin, μL, μM , Rein, Fr, Win, and Wec. The value of
δ�

ec is then substituted into either Equation (30) or (31) to deter-
mine (dP �/dx�)ec. Once the values of δ�

ec and (dP �/dx�)ec are



466 E.C. Siow et al. / International Journal of Thermal Sciences 46 (2007) 458–466
Table 1
Coefficients of equations for dimensionless pressure gradient (Eqs. (30)
and (31))

Coefficients of Eq. (30) Coefficients of Eq. (31)

a0 = 24

Rein

ρin

ρL

μL

μin

(
1 − Win

Wec

)

a1 = a0

(
μM

μL
− 1

)

b2 = −ρM

ρin

6

Fr

b3 = − ρL

ρin

8

Fr
+ ρM

ρin

12

Fr

b4 = ρL

ρin

2

Fr

(
4 − μM

μL

)
− ρM

ρin

6

Fr

d2 = −3
d3 = 2

d4 =
(

1 − μM

μL

)

e0 = 24

Rein

ρin

ρM

μM

μin

Win

Wec

e1 = e0

(
μM

μL
− 1

)

f0 = −ρM

ρin

2

Fr

f1 = ρM

ρin

8

Fr

(
1 − μM

μL

)

f2 = ρM

ρin

12

Fr

(
2
μM

μL
− 1

)
− ρL

ρin

6

Fr

μM

μL

f3 = ρM

ρin

8

Fr

(
1 − 3

μM

μL

)
+ ρL

ρin

12

Fr

μM

μL

f4 = ρM

ρin

2

Fr

(
4
μM

μL
− 1

)
− ρL

ρin

6

Fr

μM

μL

g0 = −1

g1 = 4

(
1 − μM

μL

)

g2 = 3

(
3
μM

μL
− 2

)

g3 = 2

(
2 − 3

μM

μL

)

g4 =
(

μM

μL
− 1

)

known, the coefficients required to determine u�
L,ec and u�

M,ec
(from Eqs. (25) and (26)) are easily determined.
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